{ "id": "1409.1305", "version": "v1", "published": "2014-09-04T02:36:00.000Z", "updated": "2014-09-04T02:36:00.000Z", "title": "A superdimension formula for gl(m|n) modules", "authors": [ "Michael Chmutov", "Rachel Karpman", "Shifra Reif" ], "comment": "6 pages, no figures", "categories": [ "math.RT", "math-ph", "math.CO", "math.MP" ], "abstract": "We give a formula for the superdimension of a finite-dimensional simple gl(m|n)-module using the Su-Zhang character formula. As a corollary, we obtain a simple algebraic proof of a conjecture of Kac-Wakimoto for gl(m|n), namely, a simple module has nonzero superdimension if and only if it has maximal degree of atypicality. This conjecture was proven originally by Serganova using the Duflo-Serganova associated variety.", "revisions": [ { "version": "v1", "updated": "2014-09-04T02:36:00.000Z" } ], "analyses": { "subjects": [ "17B10" ], "keywords": [ "superdimension formula", "simple algebraic proof", "su-zhang character formula", "conjecture", "simple module" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.1305C" } } }