arXiv:1407.8006 [math.RT]AbstractReferencesReviewsResources
Volume growth, temperedness and integrability of matrix coefficients on a real spherical space
Friedrich Knop, Bernhard Krötz, Eitan Sayag, Henrik Schlichtkrull
Published 2014-07-30, updated 2016-04-06Version 2
We apply the local structure theorem and the polar decomposition to a real spherical space Z=G/H and control the volume growth on Z. We define the Harish-Chandra Schwartz space on Z. We give a geometric criterion to ensure $L^p$-integrability of matrix coefficients on Z.
Comments: Additional material of 4 pages added. To appear in J. Funct. Analysis
Categories: math.RT
Related articles: Most relevant | Search more
arXiv:2105.13075 [math.RT] (Published 2021-05-27)
Matrix coefficients of intertwining operators and the Bruhat order
arXiv:2202.02119 [math.RT] (Published 2022-02-04)
The most continuous part of the Plancherel decomposition for a real spherical space
arXiv:2412.18382 [math.RT] (Published 2024-12-24)
Wehrl inequalities for matrix coefficients of holomorphic discrete series