arXiv Analytics

Sign in

arXiv:2105.13075 [math.RT]AbstractReferencesReviewsResources

Matrix coefficients of intertwining operators and the Bruhat order

Daniel Bump, Béatrice Chetard

Published 2021-05-27Version 1

Let $(\pi_{\mathbf{z}},V_{\mathbf{z}})$ be an unramified principal series representation of a reductive group over a nonarchimedean local field, parametrized by an element $\mathbf{z}$ of the maximal torus in the Langlands dual group. If $v$ is an element of the Weyl group $W$, then the standard intertwining integral $\mathcal{A}_v$ maps $V_{\mathbf{z}}$ to $V_{v\mathbf{z}}$. Letting $\psi^{\mathbf{z}}_w$ with $w\in W$ be a suitable basis of the Iwahori fixed vectors in $V_{\mathbf{z}}$, and $\widehat\psi^{\mathbf{z}}_w$ a basis of the contragredient representation, we define $\sigma(u,v,w)$ (for $u,v,w\in W$) to be $\langle \mathcal{A}_v\psi_u^{\mathbf{z}},\widehat\psi^{v\mathbf{z}}_w\rangle$. This is an interesting function and we initiate its study. We show that given $u$ and $w$, there is a minimal $v$ such that $\sigma(u,v,w)\neq 0$. Denoting this $v$ as $v_\hbox{min}=v_\hbox{min}(u,w)$, we will prove that $\sigma(u,v_\hbox{min},w)$ is a polynomial of the cardinality $q$ of the residue field. Indeed if $v>v_\hbox{min}$, then $\sigma(u,v,w)$ is a rational function of $\mathbf{z}$ and $q$, whose denominator we describe. But if $v=v_\hbox{min}$, the dependence on $\mathbf{z}$ disappears. We will express $\sigma(u,v_\hbox{min},w)$ as the Poincar\'e polynomial of a Bruhat interval. The proof leads to fairly intricate considerations of the Bruhat order. Thus our results require us to prove some facts that may be of independent interest, relating the Bruhat order $\leqslant$ and the weak Bruhat order $\leqslant_R$. For example we will prove (for finite Coxeter groups) the following "mixed meet" property. If $u, w$ are elements of $W$, then there exists a unique element $m \in W$ that is maximal with respect to the condition that $m \leqslant_R u$ and $m \leqslant w$. Thus if $z \leqslant_R u$ and $z \leqslant w$, then $x \leqslant m$. The value $v_\hbox{min}$ is $m^{-1}u$.

Related articles: Most relevant | Search more
arXiv:1303.1057 [math.RT] (Published 2013-03-05)
Intertwining operators between line bundles on Grassmannians
arXiv:1507.07572 [math.RT] (Published 2015-07-27)
Matrix Coefficients and Iwahori-Hecke Algebra Modules
arXiv:1509.03041 [math.RT] (Published 2015-09-10)
A criterion for integrability of matrix coefficients with respect to a symmetric space