{ "id": "1407.8006", "version": "v2", "published": "2014-07-30T11:46:54.000Z", "updated": "2016-04-06T08:27:08.000Z", "title": "Volume growth, temperedness and integrability of matrix coefficients on a real spherical space", "authors": [ "Friedrich Knop", "Bernhard Krötz", "Eitan Sayag", "Henrik Schlichtkrull" ], "comment": "Additional material of 4 pages added. To appear in J. Funct. Analysis", "categories": [ "math.RT" ], "abstract": "We apply the local structure theorem and the polar decomposition to a real spherical space Z=G/H and control the volume growth on Z. We define the Harish-Chandra Schwartz space on Z. We give a geometric criterion to ensure $L^p$-integrability of matrix coefficients on Z.", "revisions": [ { "version": "v1", "updated": "2014-07-30T11:46:54.000Z", "comment": "20 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2016-04-06T08:27:08.000Z" } ], "analyses": { "keywords": [ "real spherical space", "volume growth", "matrix coefficients", "integrability", "temperedness" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.8006K" } } }