arXiv:1403.0662 [math.NT]AbstractReferencesReviewsResources
On the rank of the $2$-class group of $\mathbb{Q}(\sqrt{p}, \sqrt{q},\sqrt{-1})$
Abdelmalek Azizi Mohammed Taous, Abdelkader Zekhnini
Published 2014-03-04Version 1
Let $d$ be a square-free integer, $\mathbf{k}=\mathbb{Q}(\sqrt d,\,i)$ and $i=\sqrt{-1}$. Let $\mathbf{k}_1^{(2)}$ be the Hilbert $2$-class field of $\mathbf{k}$, $\mathbf{k}_2^{(2)}$ be the Hilbert $2$-class field of $\mathbf{k}_1^{(2)}$ and $G=\mathrm{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k})$ be the Galois group of $\mathbf{k}_2^{(2)}/\mathbf{k}$. Our goal is to give necessary and sufficient conditions to have $G$ metacyclic in the case where $d=pq$, with $p$ and $q$ are primes such that $p\equiv 1\pmod 8$ and $q\equiv 5\pmod 8$ or $p\equiv 1\pmod 8$ and $q\equiv 3\pmod 4$.
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1805.04963 [math.NT] (Published 2018-05-13)
Fields $\mathbb{Q}(\sqrt[3]{d},ΞΆ_3)$ whose $3$-class group is of type $(9,3)$
arXiv:1804.00692 [math.NT] (Published 2018-04-02)
The generators of $3$-class group of some fields of degree $6$ over $\mathbb{Q}$
arXiv:2005.04314 [math.NT] (Published 2020-05-08)
The generators of $5$-class group of some fields of degree 20 over $\mathbb{Q}$