{ "id": "1403.0662", "version": "v1", "published": "2014-03-04T02:19:31.000Z", "updated": "2014-03-04T02:19:31.000Z", "title": "On the rank of the $2$-class group of $\\mathbb{Q}(\\sqrt{p}, \\sqrt{q},\\sqrt{-1})$", "authors": [ "Abdelmalek Azizi Mohammed Taous", "Abdelkader Zekhnini" ], "categories": [ "math.NT" ], "abstract": "Let $d$ be a square-free integer, $\\mathbf{k}=\\mathbb{Q}(\\sqrt d,\\,i)$ and $i=\\sqrt{-1}$. Let $\\mathbf{k}_1^{(2)}$ be the Hilbert $2$-class field of $\\mathbf{k}$, $\\mathbf{k}_2^{(2)}$ be the Hilbert $2$-class field of $\\mathbf{k}_1^{(2)}$ and $G=\\mathrm{Gal}(\\mathbf{k}_2^{(2)}/\\mathbf{k})$ be the Galois group of $\\mathbf{k}_2^{(2)}/\\mathbf{k}$. Our goal is to give necessary and sufficient conditions to have $G$ metacyclic in the case where $d=pq$, with $p$ and $q$ are primes such that $p\\equiv 1\\pmod 8$ and $q\\equiv 5\\pmod 8$ or $p\\equiv 1\\pmod 8$ and $q\\equiv 3\\pmod 4$.", "revisions": [ { "version": "v1", "updated": "2014-03-04T02:19:31.000Z" } ], "analyses": { "subjects": [ "11R11", "11R29", "11R32", "11R37" ], "keywords": [ "class group", "class field", "square-free integer", "galois group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.0662T" } } }