arXiv:2005.04314 [math.NT]AbstractReferencesReviewsResources
The generators of $5$-class group of some fields of degree 20 over $\mathbb{Q}$
Fouad Elmouhib, Mohamed Talbi, Abdelmalek Azizi
Published 2020-05-08Version 1
Let $\Gamma \,=\, \mathbb{Q}(\sqrt[5]{n})$ be a pure quintic field, where $n$ is a positive integer, $5^{th}$ power-free. Let $k_0\,=\,\mathbb{Q}(\zeta_5)$ be the cyclotomic field containing a primitive $5^{th}$ root of unity $\zeta_5$, and $k\,=\,\Gamma(\zeta_5)$ be the normal closure of $\Gamma$. Let $C_{k,5}$ be the $5$-component of the class group of k. The purpose of this paper is to determine generators of $C_{k,5}$, whenever it is of type $(5,5)$ and the rank of the group of ambiguous classes under the action of $Gal(k/k_0)\, =\,\langle \sigma\rangle$ is $1$.
Comments: 18 pages, 3 tables
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1804.00692 [math.NT] (Published 2018-04-02)
The generators of $3$-class group of some fields of degree $6$ over $\mathbb{Q}$
arXiv:2010.05138 [math.NT] (Published 2020-10-11)
The $3$-class groups of $\mathbb{Q}(\sqrt[3]{p})$ and its normal closure
arXiv:1805.04963 [math.NT] (Published 2018-05-13)
Fields $\mathbb{Q}(\sqrt[3]{d},ΞΆ_3)$ whose $3$-class group is of type $(9,3)$