{ "id": "2005.04314", "version": "v1", "published": "2020-05-08T23:21:02.000Z", "updated": "2020-05-08T23:21:02.000Z", "title": "The generators of $5$-class group of some fields of degree 20 over $\\mathbb{Q}$", "authors": [ "Fouad Elmouhib", "Mohamed Talbi", "Abdelmalek Azizi" ], "comment": "18 pages, 3 tables", "categories": [ "math.NT" ], "abstract": "Let $\\Gamma \\,=\\, \\mathbb{Q}(\\sqrt[5]{n})$ be a pure quintic field, where $n$ is a positive integer, $5^{th}$ power-free. Let $k_0\\,=\\,\\mathbb{Q}(\\zeta_5)$ be the cyclotomic field containing a primitive $5^{th}$ root of unity $\\zeta_5$, and $k\\,=\\,\\Gamma(\\zeta_5)$ be the normal closure of $\\Gamma$. Let $C_{k,5}$ be the $5$-component of the class group of k. The purpose of this paper is to determine generators of $C_{k,5}$, whenever it is of type $(5,5)$ and the rank of the group of ambiguous classes under the action of $Gal(k/k_0)\\, =\\,\\langle \\sigma\\rangle$ is $1$.", "revisions": [ { "version": "v1", "updated": "2020-05-08T23:21:02.000Z" } ], "analyses": { "subjects": [ "11R11", "11R16", "11R20", "11R27", "11R29", "11R37" ], "keywords": [ "class group", "pure quintic field", "normal closure", "determine generators", "positive integer" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }