arXiv:1401.4556 [math.NT]AbstractReferencesReviewsResources
Kloosterman Sums with Multiplicative Coefficients
Published 2014-01-18, updated 2014-03-13Version 4
Let $f(n)$ be a multiplicative function satisfying $|f(n)|\leq 1$, $q$ $(\leq N^2)$ be a positive integer and $a$ be an integer with $(a,\,q)=1$. In this paper, we shall prove that $$\sum_{\substack{n\leq N\\ (n,\,q)=1}}f(n)e({a\bar{n}\over q})\ll\sqrt{\tau(q)\over q}N\log\log(6N)+q^{{1\over 4}+{\epsilon\over 2}}N^{1\over 2}(\log(6N))^{1\over 2}+{N\over \sqrt{\log\log(6N)}},$$ where $\bar{n}$ is the multiplicative inverse of $n$ such that $\bar{n}n\equiv 1\,({\rm mod}\,q),\,e(x)=\exp(2\pi ix),\,\tau(q)$ is the divisor function.
Comments: In this version we make some refinement
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1811.09329 [math.NT] (Published 2018-11-22)
Bilinear sums of Kloosterman sums, multiplicative congruences and average values of the divisor function over families of arithmetic progressions
arXiv:1711.02871 [math.NT] (Published 2017-11-08)
On the Number of Connected Components of Ranges of Divisor Functions
arXiv:1601.05123 [math.NT] (Published 2016-01-19)
Cancellations Amongst Kloosterman Sums