{ "id": "1401.4556", "version": "v4", "published": "2014-01-18T16:03:31.000Z", "updated": "2014-03-13T14:37:55.000Z", "title": "Kloosterman Sums with Multiplicative Coefficients", "authors": [ "Ke Gong", "Chaohua Jia" ], "comment": "In this version we make some refinement", "categories": [ "math.NT" ], "abstract": "Let $f(n)$ be a multiplicative function satisfying $|f(n)|\\leq 1$, $q$ $(\\leq N^2)$ be a positive integer and $a$ be an integer with $(a,\\,q)=1$. In this paper, we shall prove that $$\\sum_{\\substack{n\\leq N\\\\ (n,\\,q)=1}}f(n)e({a\\bar{n}\\over q})\\ll\\sqrt{\\tau(q)\\over q}N\\log\\log(6N)+q^{{1\\over 4}+{\\epsilon\\over 2}}N^{1\\over 2}(\\log(6N))^{1\\over 2}+{N\\over \\sqrt{\\log\\log(6N)}},$$ where $\\bar{n}$ is the multiplicative inverse of $n$ such that $\\bar{n}n\\equiv 1\\,({\\rm mod}\\,q),\\,e(x)=\\exp(2\\pi ix),\\,\\tau(q)$ is the divisor function.", "revisions": [ { "version": "v4", "updated": "2014-03-13T14:37:55.000Z" } ], "analyses": { "keywords": [ "kloosterman sums", "multiplicative coefficients", "divisor function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.4556G" } } }