arXiv Analytics

Sign in

arXiv:1308.4464 [math.RT]AbstractReferencesReviewsResources

Remarks on the abelian ideals of a Borel subalgebra

Chao-Ping Dong

Published 2013-08-21, updated 2013-12-09Version 3

Let $\frb$ be a fixed Borel subalgebra of a finite-dimensional complex simple Lie algebra $\frg$. The Shi bijection associates to every ad-nilpotent ideal $\fri$ of $\frb$ a region $V_{\fri}$. In this paper, we show that $\fri$ is abelian if and only if $V_{\fri}\cap 2A$ is empty, if and only if the volume of $V_{\fri}\cap 2A$ equals to that of $A$, where $A$ is the fundamental alcove of the affine Weyl group. For certain flag of abelian ideals, we record an ascending property of their associated regions. We also determine the maximal eigenvalue $m_{r-1}$ of the Casimir operator on $\wedge^{r-1} \frg$ and the corresponding eigenspace $M_{r-1}$, where $r$ is the number of positive roots.

Related articles: Most relevant | Search more
arXiv:math/0402140 [math.RT] (Published 2004-02-09, updated 2004-05-20)
Normalizers of ad-nilpotent ideals
arXiv:1310.2229 [math.RT] (Published 2013-10-08, updated 2014-06-03)
Fundamental elements of an affine Weyl group
arXiv:2010.04358 [math.RT] (Published 2020-10-09)
Abelian Ideals and the Variety of Lagrangian Subalgebras