arXiv:1310.2229 [math.RT]AbstractReferencesReviewsResources
Fundamental elements of an affine Weyl group
Published 2013-10-08, updated 2014-06-03Version 2
Fundamental elements are certain special elements of affine Weyl groups introduced by Gortz, Haines, Kottwitz and Reuman. They play an important role in the study of affine Deligne-Lusztig varieties. In this paper, we obtain characterizations of the fundamental elements and their natural generalizations. We also derive an inverse to a version of "Newton-Hodge decomposition" in affine flag varieties. As an application, we obtain a group-theoretic generalization of Oort's results on minimal p-divisible groups, and we show that, in certain good reduction reduction of PEL Shimura datum, each Newton stratum contains a minimal Ekedahl-Oort stratum. This generalizes a result of Viehmann and Wedhorn.