{ "id": "1308.4464", "version": "v3", "published": "2013-08-21T01:30:49.000Z", "updated": "2013-12-09T11:51:09.000Z", "title": "Remarks on the abelian ideals of a Borel subalgebra", "authors": [ "Chao-Ping Dong" ], "comment": "The results were known already", "categories": [ "math.RT" ], "abstract": "Let $\\frb$ be a fixed Borel subalgebra of a finite-dimensional complex simple Lie algebra $\\frg$. The Shi bijection associates to every ad-nilpotent ideal $\\fri$ of $\\frb$ a region $V_{\\fri}$. In this paper, we show that $\\fri$ is abelian if and only if $V_{\\fri}\\cap 2A$ is empty, if and only if the volume of $V_{\\fri}\\cap 2A$ equals to that of $A$, where $A$ is the fundamental alcove of the affine Weyl group. For certain flag of abelian ideals, we record an ascending property of their associated regions. We also determine the maximal eigenvalue $m_{r-1}$ of the Casimir operator on $\\wedge^{r-1} \\frg$ and the corresponding eigenspace $M_{r-1}$, where $r$ is the number of positive roots.", "revisions": [ { "version": "v3", "updated": "2013-12-09T11:51:09.000Z" } ], "analyses": { "keywords": [ "abelian ideals", "finite-dimensional complex simple lie algebra", "shi bijection associates", "affine weyl group", "ad-nilpotent ideal" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.4464D" } } }