arXiv:1304.2466 [math.PR]AbstractReferencesReviewsResources
Parameter estimation based on discrete observations of fractional Ornstein-Uhlenbeck process of the second kind
Ehsan Azmoodeh, Lauri Viitasaari
Published 2013-04-09, updated 2014-09-11Version 5
Fractional Ornstein-Uhlenbeck process of the second kind $(\text{fOU}_{2})$ is solution of the Langevin equation $\mathrm{d}X_t = -\theta X_t\,\mathrm{d}t+\mathrm{d}Y_t^{(1)}, \ \theta >0$ with Gaussian driving noise $ Y_t^{(1)} := \int^t_0 e^{-s} \,\mathrm{d}B_{a_s}$, where $ a_t= H e^{\frac{t}{H}}$ and $B$ is a fractional Brownian motion with Hurst parameter $H \in (0,1)$. In this article, we consider the case $H>\frac{1}{2}$. Then using the ergodicity of $\text{fOU}_{2}$ process, we construct consistent estimators of drift parameter $\theta$ based on discrete observations in two possible cases: $(i)$ the Hurst parameter $H$ is known and $(ii)$ the Hurst parameter $H$ is unknown. Moreover, using Malliavin calculus technique, we prove central limit theorems for our estimators which is valid for the whole range $H \in (\frac{1}{2},1)$.