{ "id": "1304.2466", "version": "v5", "published": "2013-04-09T06:34:22.000Z", "updated": "2014-09-11T13:50:18.000Z", "title": "Parameter estimation based on discrete observations of fractional Ornstein-Uhlenbeck process of the second kind", "authors": [ "Ehsan Azmoodeh", "Lauri Viitasaari" ], "comment": "Modified version. arXiv admin note: text overlap with arXiv:1302.6047", "categories": [ "math.PR" ], "abstract": "Fractional Ornstein-Uhlenbeck process of the second kind $(\\text{fOU}_{2})$ is solution of the Langevin equation $\\mathrm{d}X_t = -\\theta X_t\\,\\mathrm{d}t+\\mathrm{d}Y_t^{(1)}, \\ \\theta >0$ with Gaussian driving noise $ Y_t^{(1)} := \\int^t_0 e^{-s} \\,\\mathrm{d}B_{a_s}$, where $ a_t= H e^{\\frac{t}{H}}$ and $B$ is a fractional Brownian motion with Hurst parameter $H \\in (0,1)$. In this article, we consider the case $H>\\frac{1}{2}$. Then using the ergodicity of $\\text{fOU}_{2}$ process, we construct consistent estimators of drift parameter $\\theta$ based on discrete observations in two possible cases: $(i)$ the Hurst parameter $H$ is known and $(ii)$ the Hurst parameter $H$ is unknown. Moreover, using Malliavin calculus technique, we prove central limit theorems for our estimators which is valid for the whole range $H \\in (\\frac{1}{2},1)$.", "revisions": [ { "version": "v4", "updated": "2014-01-13T10:55:11.000Z", "abstract": "Fractional Ornstein-Uhlenbeck process of the second kind $(\\text{fOU}_{2})$ is solution of the Langevin equation $\\mathrm{d}X_t = -\\theta X_t\\,\\mathrm{d}t+\\mathrm{d}Y_t^{(1)}, \\ \\theta >0$ with driving noise $ Y_t^{(1)} := \\int^t_0 e^{-s} \\,\\mathrm{d}B_{a_s}; \\ a_t= H e^{{t}{H}}$ where $B$ is a fractional Brownian motion with Hurst parameter $H \\in (0,1)$. In this article, we consider the case $H>{1}{2}$. Then using ergodicity of $\\text{fOU}_{2}$, we construct consistent estimators of drift parameter $\\theta$ based on discrete observations in both cases: $(i)$ the Hurst parameter $H$ is known and $(ii)$ the Hurst parameter $H$ is unknown. Moreover, using Malliavin calculus technique, we prove central limit theorems for our estimators which is valid for the whole range $H \\in (\\frac{1}{2},1)$.", "journal": null, "doi": null }, { "version": "v5", "updated": "2014-09-11T13:50:18.000Z" } ], "analyses": { "subjects": [ "60G22", "60H07", "62F99" ], "keywords": [ "fractional ornstein-uhlenbeck process", "discrete observations", "second kind", "parameter estimation", "hurst parameter" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.2466A" } } }