arXiv Analytics

Sign in

arXiv:1302.6047 [math.PR]AbstractReferencesReviewsResources

Drift parameter estimation for fractional Ornstein-Uhlenbeck process of the Second Kind

Ehsan Azmoodeh, Jose Igor Morlanes

Published 2013-02-25Version 1

Fractional Ornstein-Uhlenbeck process of the second kind $(\text{fOU}_{2})$ is solution of the Langevin equation $\mathrm{d}X_t = -\theta X_t\,\mathrm{d}t+\mathrm{d}Y_t^{(1)}, \ \theta >0$ with driving noise $ Y_t^{(1)} := \int^t_0 e^{-s} \,\mathrm{d}B_{a_s}; \ a_t= H e^{\frac{t}{H}}$ where $B$ is a fractional Brownian motion with Hurst parameter $H \in (0,1)$. In this article, in the case $H>1/2$, we prove that the least squares estimator $\hat{\theta}_T$ introduced in [\cite{h-n}, Statist. Probab. Lett. 80, no. 11-12, 1030-1038], provides a consistent estimator. Moreover, using central limit theorem for multiple Wiener integrals, we prove asymptotic normality of the estimator valid for the whole range $H \in(1/2,1)$.

Related articles: Most relevant | Search more
arXiv:1212.1379 [math.PR] (Published 2012-12-06, updated 2013-06-09)
Optimal On-Line Selection of an Alternating Subsequence: A Central Limit Theorem
arXiv:math/0609754 [math.PR] (Published 2006-09-27)
A central limit theorem for a localized version of the SK model
arXiv:math/0702481 [math.PR] (Published 2007-02-16, updated 2007-05-04)
Central Limit Theorem for a Class of Relativistic Diffusions