{ "id": "1302.6047", "version": "v1", "published": "2013-02-25T10:57:28.000Z", "updated": "2013-02-25T10:57:28.000Z", "title": "Drift parameter estimation for fractional Ornstein-Uhlenbeck process of the Second Kind", "authors": [ "Ehsan Azmoodeh", "Jose Igor Morlanes" ], "comment": "18 pages", "categories": [ "math.PR" ], "abstract": "Fractional Ornstein-Uhlenbeck process of the second kind $(\\text{fOU}_{2})$ is solution of the Langevin equation $\\mathrm{d}X_t = -\\theta X_t\\,\\mathrm{d}t+\\mathrm{d}Y_t^{(1)}, \\ \\theta >0$ with driving noise $ Y_t^{(1)} := \\int^t_0 e^{-s} \\,\\mathrm{d}B_{a_s}; \\ a_t= H e^{\\frac{t}{H}}$ where $B$ is a fractional Brownian motion with Hurst parameter $H \\in (0,1)$. In this article, in the case $H>1/2$, we prove that the least squares estimator $\\hat{\\theta}_T$ introduced in [\\cite{h-n}, Statist. Probab. Lett. 80, no. 11-12, 1030-1038], provides a consistent estimator. Moreover, using central limit theorem for multiple Wiener integrals, we prove asymptotic normality of the estimator valid for the whole range $H \\in(1/2,1)$.", "revisions": [ { "version": "v1", "updated": "2013-02-25T10:57:28.000Z" } ], "analyses": { "keywords": [ "fractional ornstein-uhlenbeck process", "drift parameter estimation", "second kind", "fractional brownian motion", "central limit theorem" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.6047A" } } }