arXiv:1208.3903 [math.CO]AbstractReferencesReviewsResources
On monotonicity of some combinatorial sequences
Qing-Hu Hou, Zhi-Wei Sun, Haomin Wen
Published 2012-08-19, updated 2014-12-23Version 8
We confirm Sun's conjecture that $(\root{n+1}\of{F_{n+1}}/\root{n}\of{F_n})_{n\ge 4}$ is strictly decreasing to the limit 1, where $(F_n)_{n\ge0}$ is the Fibonacci sequence. We also prove that the sequence $(\root{n+1}\of{D_{n+1}}/\root{n}\of{D_n})_{n\ge3}$ is strictly decreasing with limit $1$, where $D_n$ is the $n$-th derangement number. For $m$-th order harmonic numbers $H_n^{(m)}=\sum_{k=1}^n 1/k^m\ (n=1,2,3,\ldots)$, we show that $(\root{n+1}\of{H^{(m)}_{n+1}}/\root{n}\of{H^{(m)}_n})_{n\ge3}$ is strictly increasing.
Comments: 10 pages
Journal: Publ. Math. Debrecen 85(2014), no.3-4, 285-295
Categories: math.CO
Keywords: combinatorial sequences, monotonicity, th order harmonic numbers, th derangement number, confirm suns conjecture
Tags: journal article
Related articles: Most relevant | Search more
Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences
arXiv:1609.06810 [math.CO] (Published 2016-09-22)
Hankel-type determinants for some combinatorial sequences
Monotonicity and log-behavior of some functions related to the Euler Gamma function