{ "id": "1208.3903", "version": "v8", "published": "2012-08-19T23:30:05.000Z", "updated": "2014-12-23T04:53:07.000Z", "title": "On monotonicity of some combinatorial sequences", "authors": [ "Qing-Hu Hou", "Zhi-Wei Sun", "Haomin Wen" ], "comment": "10 pages", "journal": "Publ. Math. Debrecen 85(2014), no.3-4, 285-295", "categories": [ "math.CO" ], "abstract": "We confirm Sun's conjecture that $(\\root{n+1}\\of{F_{n+1}}/\\root{n}\\of{F_n})_{n\\ge 4}$ is strictly decreasing to the limit 1, where $(F_n)_{n\\ge0}$ is the Fibonacci sequence. We also prove that the sequence $(\\root{n+1}\\of{D_{n+1}}/\\root{n}\\of{D_n})_{n\\ge3}$ is strictly decreasing with limit $1$, where $D_n$ is the $n$-th derangement number. For $m$-th order harmonic numbers $H_n^{(m)}=\\sum_{k=1}^n 1/k^m\\ (n=1,2,3,\\ldots)$, we show that $(\\root{n+1}\\of{H^{(m)}_{n+1}}/\\root{n}\\of{H^{(m)}_n})_{n\\ge3}$ is strictly increasing.", "revisions": [ { "version": "v7", "updated": "2014-04-10T14:24:02.000Z", "comment": "10 pages. Accepted version for publication in Publ. Math. Debrecen", "journal": null, "doi": null }, { "version": "v8", "updated": "2014-12-23T04:53:07.000Z" } ], "analyses": { "subjects": [ "05A10", "11B39", "11B75" ], "keywords": [ "combinatorial sequences", "monotonicity", "th order harmonic numbers", "th derangement number", "confirm suns conjecture" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.3903H" } } }