arXiv:1609.06810 [math.CO]AbstractReferencesReviewsResources
Hankel-type determinants for some combinatorial sequences
Published 2016-09-22Version 1
In this paper we confirm several conjectures of Z.-W. Sun on Hankel-type determinants for some combinatorial sequences including Franel numbers, Domb numbers and Ap\'ery numbers. For any nonnegative integer $n$, define \begin{gather*}f_n:=\sum_{k=0}^n\binom nk^3,\ D_n:=\sum_{k=0}^n\binom nk^2\binom{2k}k\binom{2(n-k)}{n-k}, \\b_n:=\sum_{k=0}^n\binom nk^2\binom{n+k}k,\ A_n:=\sum_{k=0}^n\binom nk^2\binom{n+k}k^2. \end{gather*} For $n=0,1,2,\ldots$, we show that $6^{-n}|f_{i+j}|_{0\leq i,j\leq n}$ and $12^{-n}|D_{i+j}|_{0\le i,j\le n}$ are positive odd integers, and $10^{-n}|b_{i+j}|_{0\leq i,j\leq n}$ and $24^{-n}|A_{i+j}|_{0\leq i,j\leq n}$ are always integers.
Comments: 12 pages
Categories: math.CO
Related articles: Most relevant | Search more
On monotonicity of some combinatorial sequences
The 2-log-convexity of the Apery Numbers
Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences