arXiv Analytics

Sign in

arXiv:1207.4719 [math.FA]AbstractReferencesReviewsResources

Embeddings of Müntz Spaces: Composition Operators

S. Waleed Noor

Published 2012-07-19Version 1

Given a strictly increasing sequence $\Lambda=(\lambda_n)$ of nonegative real numbers, with $\sum_{n=1}^\infty \frac{1}{\lambda_n}<\infty$, the M\"untz spaces $M_\Lambda^p$ are defined as the closure in $L^p([0,1])$ of the monomials $x^{\lambda_n}$. We discuss how properties of the embedding $M_\Lambda^2\subset L^2(\mu)$, where $\mu$ is a finite positive Borel measure on the interval $[0,1]$, have immediate consequences for composition operators on $M^2_\Lambda$. We give criteria for composition operators to be bounded, compact, or to belong to the Schatten--von Neumann ideals.

Comments: 15 Pages; Integral Equations Operator Theory, Springer, 2012
Journal: Integral Equations Operator Theory, Volume 73, Issue 4, 589-602 (2012)
Categories: math.FA
Subjects: 46E15, 46E20, 46E35
Related articles: Most relevant | Search more
arXiv:1110.5422 [math.FA] (Published 2011-10-25)
Embeddings of Müntz spaces: the Hilbertian case
arXiv:1001.3013 [math.FA] (Published 2010-01-18)
Embedding Theorems for Müntz spaces
arXiv:2505.09182 [math.FA] (Published 2025-05-14)
Composition operators in Orlicz-Sobolev spaces