{ "id": "1207.4719", "version": "v1", "published": "2012-07-19T16:10:31.000Z", "updated": "2012-07-19T16:10:31.000Z", "title": "Embeddings of Müntz Spaces: Composition Operators", "authors": [ "S. Waleed Noor" ], "comment": "15 Pages; Integral Equations Operator Theory, Springer, 2012", "journal": "Integral Equations Operator Theory, Volume 73, Issue 4, 589-602 (2012)", "categories": [ "math.FA" ], "abstract": "Given a strictly increasing sequence $\\Lambda=(\\lambda_n)$ of nonegative real numbers, with $\\sum_{n=1}^\\infty \\frac{1}{\\lambda_n}<\\infty$, the M\\\"untz spaces $M_\\Lambda^p$ are defined as the closure in $L^p([0,1])$ of the monomials $x^{\\lambda_n}$. We discuss how properties of the embedding $M_\\Lambda^2\\subset L^2(\\mu)$, where $\\mu$ is a finite positive Borel measure on the interval $[0,1]$, have immediate consequences for composition operators on $M^2_\\Lambda$. We give criteria for composition operators to be bounded, compact, or to belong to the Schatten--von Neumann ideals.", "revisions": [ { "version": "v1", "updated": "2012-07-19T16:10:31.000Z" } ], "analyses": { "subjects": [ "46E15", "46E20", "46E35" ], "keywords": [ "composition operators", "müntz spaces", "schatten-von neumann ideals", "finite positive borel measure", "immediate consequences" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.4719W" } } }