arXiv Analytics

Sign in

arXiv:1110.5422 [math.FA]AbstractReferencesReviewsResources

Embeddings of Müntz spaces: the Hilbertian case

S. Waleed Noor, Dan Timotin

Published 2011-10-25Version 1

Given a strictly increasing sequence $\Lambda=(\lambda_n)$ of nonegative real numbers, with $\sum_{n=1}^\infty \frac{1}{\lambda_n}<\infty$, the M\"untz spaces $M_\Lambda^p$ are defined as the closure in $L^p([0,1])$ of the monomials $x^{\lambda_n}$. We discuss properties of the embedding $M_\Lambda^p\subset L^p(\mu)$, where $\mu$ is a finite positive Borel measure on the interval $[0,1]$. Most of the results are obtained for the Hilbertian case $p=2$, in which we give conditions for the embedding to be bounded, compact, or to belong to the Schatten--von Neumann ideals.

Journal: Proc. Amer. Math. Soc. 141 (2013), 2009-2023
Categories: math.FA, math.CA
Subjects: 46E15, 46E20, 46E35
Related articles: Most relevant | Search more
arXiv:1207.4719 [math.FA] (Published 2012-07-19)
Embeddings of Müntz Spaces: Composition Operators
arXiv:1001.3013 [math.FA] (Published 2010-01-18)
Embedding Theorems for Müntz spaces
arXiv:1811.02011 [math.FA] (Published 2018-11-05)
On octahedraliy and Müntz spaces