{ "id": "1110.5422", "version": "v1", "published": "2011-10-25T07:13:19.000Z", "updated": "2011-10-25T07:13:19.000Z", "title": "Embeddings of Müntz spaces: the Hilbertian case", "authors": [ "S. Waleed Noor", "Dan Timotin" ], "journal": "Proc. Amer. Math. Soc. 141 (2013), 2009-2023", "categories": [ "math.FA", "math.CA" ], "abstract": "Given a strictly increasing sequence $\\Lambda=(\\lambda_n)$ of nonegative real numbers, with $\\sum_{n=1}^\\infty \\frac{1}{\\lambda_n}<\\infty$, the M\\\"untz spaces $M_\\Lambda^p$ are defined as the closure in $L^p([0,1])$ of the monomials $x^{\\lambda_n}$. We discuss properties of the embedding $M_\\Lambda^p\\subset L^p(\\mu)$, where $\\mu$ is a finite positive Borel measure on the interval $[0,1]$. Most of the results are obtained for the Hilbertian case $p=2$, in which we give conditions for the embedding to be bounded, compact, or to belong to the Schatten--von Neumann ideals.", "revisions": [ { "version": "v1", "updated": "2011-10-25T07:13:19.000Z" } ], "analyses": { "subjects": [ "46E15", "46E20", "46E35" ], "keywords": [ "hilbertian case", "müntz spaces", "finite positive borel measure", "schatten-von neumann ideals", "nonegative real numbers" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Proc. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.5422W" } } }