arXiv Analytics

Sign in

arXiv:1202.2267 [math.NT]AbstractReferencesReviewsResources

On The Solutions of The Equation (4^n)^x+p^y=z^2

Bilge Peker, Selin Inag Cenberci

Published 2012-02-10Version 1

In this paper, we gave solutions of the Diophantine equations 16^{x}+p^{y}=z^{2}, 64^{x}+p^{y}=z^{2} where p is an odd prime, n is a positive integer and x,y,z are non-negative integers. Finally we gave a generalization of the Diophantine equation (4^{n})^{x}+p^{y}=z^{2}.

Comments: 4 pages
Categories: math.NT
Subjects: 11D61
Related articles: Most relevant | Search more
arXiv:1703.04950 [math.NT] (Published 2017-03-15)
Complete solution of the Diophantine Equation $x^{2}+5^{a}\cdot 11^{b}=y^{n}$
arXiv:1001.2525 [math.NT] (Published 2010-01-14)
On the Diophantine Equation $x^{2}+5^{a}\cdot 11^{b}=y^{n} $
arXiv:1112.5986 [math.NT] (Published 2011-12-27)
The Diophantine Equation x^{2}+11^{m}=y^{n}