{ "id": "1202.2267", "version": "v1", "published": "2012-02-10T14:36:00.000Z", "updated": "2012-02-10T14:36:00.000Z", "title": "On The Solutions of The Equation (4^n)^x+p^y=z^2", "authors": [ "Bilge Peker", "Selin Inag Cenberci" ], "comment": "4 pages", "categories": [ "math.NT" ], "abstract": "In this paper, we gave solutions of the Diophantine equations 16^{x}+p^{y}=z^{2}, 64^{x}+p^{y}=z^{2} where p is an odd prime, n is a positive integer and x,y,z are non-negative integers. Finally we gave a generalization of the Diophantine equation (4^{n})^{x}+p^{y}=z^{2}.", "revisions": [ { "version": "v1", "updated": "2012-02-10T14:36:00.000Z" } ], "analyses": { "subjects": [ "11D61" ], "keywords": [ "diophantine equation", "odd prime", "gave solutions" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.2267P" } } }