arXiv Analytics

Sign in

arXiv:1111.6687 [math.PR]AbstractReferencesReviewsResources

Upper Tails for Cliques

Bobby DeMarco, Jeff Kahn

Published 2011-11-29, updated 2012-11-09Version 2

With $\xi_{k}=\xi_{k}^{n,p}$ the number of copies of $K_k$ in the usual (Erd\H{o}s-R\'enyi) random graph $G(n,p)$, $p\geq n^{-2/(k-1)}$ and $\eta>0$, we show when $k>1$ $$\Pr(\xi_k> (1+\eta)\E \xi_k) < \exp [-\gO_{\eta,k} \min\{n^2p^{k-1}\log(1/p), n^kp^{\binom{k}{2}}\}].$$ This is tight up to the value of the constant in the exponent.

Comments: 25 pages
Categories: math.PR, math.CO
Subjects: 60F10, 05C80
Related articles: Most relevant | Search more
arXiv:1005.4471 [math.PR] (Published 2010-05-25, updated 2011-11-29)
Upper tails for triangles
arXiv:1207.6717 [math.PR] (Published 2012-07-28)
On the triangle space of a random graph
arXiv:1603.00081 [math.PR] (Published 2016-02-29)
On the Potts antiferromagnet on random graphs