arXiv:1005.4471 [math.PR]AbstractReferencesReviewsResources
Upper tails for triangles
Published 2010-05-25, updated 2011-11-29Version 2
With $\xi$ the number of triangles in the usual (Erd\H{o}s-R\'enyi) random graph $G(m,p)$, $p>1/m$ and $\eta>0$, we show (for some $C_{\eta}>0$) $$\Pr(\xi> (1+\eta)\E \xi) < \exp[-C_{\eta}\min{m^2p^2\log(1/p),m^3p^3}].$$ This is tight up to the value of $C_{\eta}$.
Related articles: Most relevant | Search more
Upper Tails for Cliques
arXiv:1207.6717 [math.PR] (Published 2012-07-28)
On the triangle space of a random graph
arXiv:1603.00081 [math.PR] (Published 2016-02-29)
On the Potts antiferromagnet on random graphs