arXiv Analytics

Sign in

arXiv:1005.4471 [math.PR]AbstractReferencesReviewsResources

Upper tails for triangles

Bobby DeMarco, Jeff Kahn

Published 2010-05-25, updated 2011-11-29Version 2

With $\xi$ the number of triangles in the usual (Erd\H{o}s-R\'enyi) random graph $G(m,p)$, $p>1/m$ and $\eta>0$, we show (for some $C_{\eta}>0$) $$\Pr(\xi> (1+\eta)\E \xi) < \exp[-C_{\eta}\min{m^2p^2\log(1/p),m^3p^3}].$$ This is tight up to the value of $C_{\eta}$.

Comments: 10 pages
Categories: math.PR, math.CO
Subjects: 60F10, 05C80
Related articles: Most relevant | Search more
arXiv:1111.6687 [math.PR] (Published 2011-11-29, updated 2012-11-09)
Upper Tails for Cliques
arXiv:1207.6717 [math.PR] (Published 2012-07-28)
On the triangle space of a random graph
arXiv:1603.00081 [math.PR] (Published 2016-02-29)
On the Potts antiferromagnet on random graphs