{ "id": "1005.4471", "version": "v2", "published": "2010-05-25T02:54:24.000Z", "updated": "2011-11-29T15:57:46.000Z", "title": "Upper tails for triangles", "authors": [ "Bobby DeMarco", "Jeff Kahn" ], "comment": "10 pages", "doi": "10.1002/rsa.20382", "categories": [ "math.PR", "math.CO" ], "abstract": "With $\\xi$ the number of triangles in the usual (Erd\\H{o}s-R\\'enyi) random graph $G(m,p)$, $p>1/m$ and $\\eta>0$, we show (for some $C_{\\eta}>0$) $$\\Pr(\\xi> (1+\\eta)\\E \\xi) < \\exp[-C_{\\eta}\\min{m^2p^2\\log(1/p),m^3p^3}].$$ This is tight up to the value of $C_{\\eta}$.", "revisions": [ { "version": "v2", "updated": "2011-11-29T15:57:46.000Z" } ], "analyses": { "subjects": [ "60F10", "05C80" ], "keywords": [ "upper tails", "random graph" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.4471D" } } }