{ "id": "1111.6687", "version": "v2", "published": "2011-11-29T04:25:14.000Z", "updated": "2012-11-09T15:32:58.000Z", "title": "Upper Tails for Cliques", "authors": [ "Bobby DeMarco", "Jeff Kahn" ], "comment": "25 pages", "doi": "10.1002/rsa.20440", "categories": [ "math.PR", "math.CO" ], "abstract": "With $\\xi_{k}=\\xi_{k}^{n,p}$ the number of copies of $K_k$ in the usual (Erd\\H{o}s-R\\'enyi) random graph $G(n,p)$, $p\\geq n^{-2/(k-1)}$ and $\\eta>0$, we show when $k>1$ $$\\Pr(\\xi_k> (1+\\eta)\\E \\xi_k) < \\exp [-\\gO_{\\eta,k} \\min\\{n^2p^{k-1}\\log(1/p), n^kp^{\\binom{k}{2}}\\}].$$ This is tight up to the value of the constant in the exponent.", "revisions": [ { "version": "v2", "updated": "2012-11-09T15:32:58.000Z" } ], "analyses": { "subjects": [ "60F10", "05C80" ], "keywords": [ "upper tails", "random graph" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.6687D" } } }