arXiv Analytics

Sign in

arXiv:1111.4636 [math.CO]AbstractReferencesReviewsResources

A note on traces of set families

Balazs Patkos

Published 2011-11-20, updated 2017-12-01Version 3

A family of sets $\mathcal{F} \subseteq 2^{[n]}$ is defined to be $l$-trace $k$-Sperner if for any $l$-subset $L$ of $[n]$ the family of traces $\mathcal{F}|_L=\{F \cap L: F \in \mathcal{F}\}$ does not contain any chain of length $k+1$. In this paper we prove that for any positive integers $l',k$ with $l'<k$ if $\mathcal{F}$ is $(n-l')$-trace $k$-Sperner, then $|\mathcal{F}| \le (k-l'+o(1))\binom{n}{\lfloor n/2\rfloor}$ and this bound is asymptotically tight.

Journal: Moscow Journal of Combinatorics and Number Theory, 2 (2012) 47-55
Categories: math.CO
Subjects: 05D05
Related articles: Most relevant | Search more
arXiv:math/0210208 [math.CO] (Published 2002-10-14, updated 2002-12-02)
A new family of positive integers
arXiv:1211.1606 [math.CO] (Published 2012-09-23, updated 2012-11-30)
On identities generated by compositions of positive integers
arXiv:1412.0392 [math.CO] (Published 2014-12-01)
On the equation $\mathbf{m=xyzw}$ with $\mathbf{x\leqslant y\leqslant z\leqslant w}$ in positive integers