{ "id": "1111.4636", "version": "v3", "published": "2011-11-20T14:23:31.000Z", "updated": "2017-12-01T15:12:54.000Z", "title": "A note on traces of set families", "authors": [ "Balazs Patkos" ], "journal": "Moscow Journal of Combinatorics and Number Theory, 2 (2012) 47-55", "categories": [ "math.CO" ], "abstract": "A family of sets $\\mathcal{F} \\subseteq 2^{[n]}$ is defined to be $l$-trace $k$-Sperner if for any $l$-subset $L$ of $[n]$ the family of traces $\\mathcal{F}|_L=\\{F \\cap L: F \\in \\mathcal{F}\\}$ does not contain any chain of length $k+1$. In this paper we prove that for any positive integers $l',k$ with $l'