arXiv:math/0210208 [math.CO]AbstractReferencesReviewsResources
A new family of positive integers
Published 2002-10-14, updated 2002-12-02Version 2
Let n,p,k be three positive integers. We prove that the numbers binomial (n,k) 3F2 (1-k, -p, p-n ; 1, 1-n ; 1) are positive integers which generalize the classical binomial coefficients. We give two generating functions for these integers, and a straightforward application.
Comments: Enlarged version, LaTeX, 7 pages
Journal: Annals of Combinatorics 6 (2002), 399-405.
Categories: math.CO
Keywords: positive integers, numbers binomial, classical binomial coefficients, generating functions
Tags: journal article
Related articles: Most relevant | Search more
arXiv:math/0205089 [math.CO] (Published 2002-05-08)
Generating functions for moments of the quasi-nilpotent DT-operator
From indexed grammars to generating functions
arXiv:math/0608398 [math.CO] (Published 2006-08-15)
Mixed powers of generating functions