arXiv Analytics

Sign in

arXiv:1101.3463 [math.RT]AbstractReferencesReviewsResources

The Segal-Bargmann Transform on Compact Symmetric Spaces and their Direct Limits

Gestur Olafsson, Keng Wiboonton

Published 2011-01-18Version 1

We study the Segal-Bargmann transform, or the heat transform, $H_t$ for a compact symmetric space $M=U/K$. We prove that $H_t$ is a unitary isomorphism $H_t : L^2(M) \to \cH_t (M_\C)$ using representation theory and the restriction principle. We then show that the Segal-Bargmann transform behaves nicely under propagation of symmetric spaces. If $\{M_n=U_n/K_n,\iota_{n,m}\}_n$ is a direct family of compact symmetric spaces such that $M_m$ propagates $M_n$, $m\ge n$, then this gives rise to direct families of Hilbert spaces $\{L^2(M_n),\gamma_{n,m}\}$ and $\{\cH_t(M_{n\C}),\delta_{n,m}\}$ such that $H_{t,m}\circ \gamma_{n,m}=\delta_{n,m}\circ H_{t,n}$. We also consider similar commutative diagrams for the $K_n$-invariant case. These lead to isometric isomorphisms between the Hilbert spaces $\varinjlim L^2(M_n)\simeq \varinjlim \mathcal{H} (M_{n\mathbb{C}})$ as well as $\varinjlim L^2(M_n)^{K_n}\simeq \varinjlim \mathcal{H} (M_{n\mathbb{C}})^{K_n}$.

Related articles: Most relevant | Search more
arXiv:0808.2251 [math.RT] (Published 2008-08-18, updated 2011-09-14)
Compact symmetric spaces, triangular factorization, and Cayley coordinates
arXiv:2406.12626 [math.RT] (Published 2024-06-18)
Irreducible representations of $\mathrm{SL}(2,\R)$ on Hilbert spaces are admissible
arXiv:math/0609336 [math.RT] (Published 2006-09-12, updated 2006-12-14)
The inversion of the X-ray Transform on a Compact Symmetric Space