arXiv:2406.12626 [math.RT]AbstractReferencesReviewsResources
Irreducible representations of $\mathrm{SL}(2,\R)$ on Hilbert spaces are admissible
Francesca Astengo, Michael G. Cowling, Bianca Di Blasio
Published 2024-06-18Version 1
We show that irreducible strongly continuous representations of $\mathrm{SL}(2,\mathbb{R})$ on Hilbert spaces are admissible, modulo the recently proposed solution of the invariant subspace problem on Hilbert spaces.
Comments: 13 pages
Categories: math.RT
Related articles: Most relevant | Search more
arXiv:0807.0901 [math.RT] (Published 2008-07-06)
Simple modules over factorpowers
arXiv:1604.04672 [math.RT] (Published 2016-04-16)
On Categories of Admissible $\big(\mathfrak{g},\mathrm{sl}(2)\big)$-Modules
arXiv:2310.20399 [math.RT] (Published 2023-10-31)
Linkage for irreducible representations of ${\rm GL}_3$ in local Base change