{ "id": "1101.3463", "version": "v1", "published": "2011-01-18T14:33:57.000Z", "updated": "2011-01-18T14:33:57.000Z", "title": "The Segal-Bargmann Transform on Compact Symmetric Spaces and their Direct Limits", "authors": [ "Gestur Olafsson", "Keng Wiboonton" ], "categories": [ "math.RT" ], "abstract": "We study the Segal-Bargmann transform, or the heat transform, $H_t$ for a compact symmetric space $M=U/K$. We prove that $H_t$ is a unitary isomorphism $H_t : L^2(M) \\to \\cH_t (M_\\C)$ using representation theory and the restriction principle. We then show that the Segal-Bargmann transform behaves nicely under propagation of symmetric spaces. If $\\{M_n=U_n/K_n,\\iota_{n,m}\\}_n$ is a direct family of compact symmetric spaces such that $M_m$ propagates $M_n$, $m\\ge n$, then this gives rise to direct families of Hilbert spaces $\\{L^2(M_n),\\gamma_{n,m}\\}$ and $\\{\\cH_t(M_{n\\C}),\\delta_{n,m}\\}$ such that $H_{t,m}\\circ \\gamma_{n,m}=\\delta_{n,m}\\circ H_{t,n}$. We also consider similar commutative diagrams for the $K_n$-invariant case. These lead to isometric isomorphisms between the Hilbert spaces $\\varinjlim L^2(M_n)\\simeq \\varinjlim \\mathcal{H} (M_{n\\mathbb{C}})$ as well as $\\varinjlim L^2(M_n)^{K_n}\\simeq \\varinjlim \\mathcal{H} (M_{n\\mathbb{C}})^{K_n}$.", "revisions": [ { "version": "v1", "updated": "2011-01-18T14:33:57.000Z" } ], "analyses": { "keywords": [ "compact symmetric space", "direct limits", "hilbert spaces", "similar commutative diagrams", "heat transform" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1101.3463O" } } }