arXiv:1009.0079 [math.FA]AbstractReferencesReviewsResources
A characterization of inner product spaces
Mohammad Sal Moslehian, John M. Rassias
Published 2010-09-01Version 1
In this paper we present a new criterion on characterization of real inner product spaces. We conclude that a real normed space $(X, \|...\|)$ is an inner product space if $$\sum_{\epsilon_i \in \{-1,1\}} \|x_1 + \sum_{i=2}^k\epsilon_ix_i\|^2=\sum_{\epsilon_i \in \{-1,1\}} (\|x_1\| + \sum_{i=2}^k\epsilon_i\|x_i\|)^2,$$ for some positive integer $k\geq 2$ and all $x_1, ..., x_k \in X$. Conversely, if $(X, \|...\|)$ is an inner product space, then the equality above holds for all $k\geq 2$ and all $x_1, ..., x_k \in X$.
Comments: 8 Pages, to appear in Kochi J. Math. (Japan)
Journal: Kochi J. Math. 6 (2011), 101-107
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1109.1773 [math.FA] (Published 2011-09-08)
Characterization of a generalized triangle inequality in normed spaces
arXiv:1006.1022 [math.FA] (Published 2010-06-05)
A characterization of inner product spaces related to the p-angular distance
arXiv:1207.5201 [math.FA] (Published 2012-07-22)
Characterization of the monotonicity by the inequality