{ "id": "1009.0079", "version": "v1", "published": "2010-09-01T02:53:40.000Z", "updated": "2010-09-01T02:53:40.000Z", "title": "A characterization of inner product spaces", "authors": [ "Mohammad Sal Moslehian", "John M. Rassias" ], "comment": "8 Pages, to appear in Kochi J. Math. (Japan)", "journal": "Kochi J. Math. 6 (2011), 101-107", "categories": [ "math.FA", "math.CA" ], "abstract": "In this paper we present a new criterion on characterization of real inner product spaces. We conclude that a real normed space $(X, \\|...\\|)$ is an inner product space if $$\\sum_{\\epsilon_i \\in \\{-1,1\\}} \\|x_1 + \\sum_{i=2}^k\\epsilon_ix_i\\|^2=\\sum_{\\epsilon_i \\in \\{-1,1\\}} (\\|x_1\\| + \\sum_{i=2}^k\\epsilon_i\\|x_i\\|)^2,$$ for some positive integer $k\\geq 2$ and all $x_1, ..., x_k \\in X$. Conversely, if $(X, \\|...\\|)$ is an inner product space, then the equality above holds for all $k\\geq 2$ and all $x_1, ..., x_k \\in X$.", "revisions": [ { "version": "v1", "updated": "2010-09-01T02:53:40.000Z" } ], "analyses": { "subjects": [ "46C15", "46B20", "46C05" ], "keywords": [ "characterization", "real inner product spaces", "real normed space", "positive integer" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.0079S" } } }