arXiv Analytics

Sign in

arXiv:1109.1773 [math.FA]AbstractReferencesReviewsResources

Characterization of a generalized triangle inequality in normed spaces

F. Dadipour, M. S. Moslehian, J. M. Rassias, S. -E. Takahasi

Published 2011-09-08Version 1

For a normed linear space $(X,|\cdot|)$ and $p>0$ we characterize all $n$-tuples $(\mu_1,...,\mu_n)\in\mathbb{R}^{n}$ for which the generalized triangle inequality of the second type $$\|x_1+...+x_n\|^p\leq\frac{|x_1|^p}{\mu_1}+...+\frac{|x_n|^p}{\mu_n}$$ holds for any $x_1,...,x_n\in X$. We also characterize $(\mu_1,...,\mu_n)\in\mathbb{R}^{n}$ for which the reverse of the inequality above holds.

Comments: 11 Pages, to appear in Nonlinear Anal-TMA
Journal: Nonlinear Anal-TMA 75 (2012), no. 2, 735-741
Categories: math.FA, math.CA
Subjects: 46C15, 46B20, 46C05
Related articles: Most relevant | Search more
arXiv:1009.0079 [math.FA] (Published 2010-09-01)
A characterization of inner product spaces
arXiv:1006.1022 [math.FA] (Published 2010-06-05)
A characterization of inner product spaces related to the p-angular distance
arXiv:1512.00788 [math.FA] (Published 2015-12-02)
A characterization of barrelledness of $C_p(X)$