arXiv Analytics

Sign in

arXiv:1005.3030 [math.FA]AbstractReferencesReviewsResources

On a discrete version of Tanaka's theorem for maximal functions

Jonathan Bober, Emanuel Carneiro, Kevin Hughes, Lillian B. Pierce

Published 2010-05-17, updated 2014-12-28Version 4

In this paper we prove a discrete version of Tanaka's Theorem \cite{Ta} for the Hardy-Littlewood maximal operator in dimension $n=1$, both in the non-centered and centered cases. For the discrete non-centered maximal operator $\widetilde{M} $ we prove that, given a function $f: \mathbb{Z} \to \mathbb{R}$ of bounded variation, $$\textrm{Var}(\widetilde{M} f) \leq \textrm{Var}(f),$$ where $\textrm{Var}(f)$ represents the total variation of $f$. For the discrete centered maximal operator $M$ we prove that, given a function $f: \mathbb{Z} \to \mathbb{R}$ such that $f \in \ell^1(\mathbb{Z})$, $$\textrm{Var}(Mf) \leq C \|f\|_{\ell^1(\mathbb{Z})}.$$ This provides a positive solution to a question of Haj{\l}asz and Onninen \cite{HO} in the discrete one-dimensional case.

Comments: V4 - Proof of Lemma 3 updated
Journal: Proc. Amer. Math. Soc. 140 (2012), 1669-1680
Categories: math.FA
Subjects: 42B25, 46E35
Related articles: Most relevant | Search more
arXiv:1210.6778 [math.FA] (Published 2012-10-25, updated 2013-06-11)
A note on maximal commutators and commutators of maximal functions
arXiv:2102.04748 [math.FA] (Published 2021-02-09)
New estimates for the maximal functions and applications
arXiv:2303.16587 [math.FA] (Published 2023-03-29)
Maximal operator in Musielak--Orlicz--Sobolev spaces