{ "id": "1005.3030", "version": "v4", "published": "2010-05-17T20:11:30.000Z", "updated": "2014-12-28T05:39:49.000Z", "title": "On a discrete version of Tanaka's theorem for maximal functions", "authors": [ "Jonathan Bober", "Emanuel Carneiro", "Kevin Hughes", "Lillian B. Pierce" ], "comment": "V4 - Proof of Lemma 3 updated", "journal": "Proc. Amer. Math. Soc. 140 (2012), 1669-1680", "doi": "10.1090/S0002-9939-2011-11008-6", "categories": [ "math.FA" ], "abstract": "In this paper we prove a discrete version of Tanaka's Theorem \\cite{Ta} for the Hardy-Littlewood maximal operator in dimension $n=1$, both in the non-centered and centered cases. For the discrete non-centered maximal operator $\\widetilde{M} $ we prove that, given a function $f: \\mathbb{Z} \\to \\mathbb{R}$ of bounded variation, $$\\textrm{Var}(\\widetilde{M} f) \\leq \\textrm{Var}(f),$$ where $\\textrm{Var}(f)$ represents the total variation of $f$. For the discrete centered maximal operator $M$ we prove that, given a function $f: \\mathbb{Z} \\to \\mathbb{R}$ such that $f \\in \\ell^1(\\mathbb{Z})$, $$\\textrm{Var}(Mf) \\leq C \\|f\\|_{\\ell^1(\\mathbb{Z})}.$$ This provides a positive solution to a question of Haj{\\l}asz and Onninen \\cite{HO} in the discrete one-dimensional case.", "revisions": [ { "version": "v3", "updated": "2011-08-10T18:00:41.000Z", "abstract": "In this paper we prove a discrete version of Tanaka's Theorem \\cite{Ta} for the Hardy-Littlewood maximal operator in dimension $n=1$, both in the non-centered and centered cases. For the discrete non-centered maximal operator $\\wM $ we prove that, given a function $f: \\Z \\to \\R$ of bounded variation, $$\\Var(\\wM f) \\leq \\Var(f),$$ where $\\Var(f)$ represents the total variation of $f$. For the discrete centered maximal operator $M$ we prove that, given a function $f: \\Z \\to \\R$ such that $f \\in \\ell^1(\\Z)$, $$\\Var(Mf) \\leq C \\|f\\|_{\\ell^1(\\Z)}.$$ This provides a positive solution to a question of Haj{\\l}asz and Onninen \\cite{HO} in the discrete one-dimensional case.", "comment": "V3 - some typos corrected" }, { "version": "v4", "updated": "2014-12-28T05:39:49.000Z" } ], "analyses": { "subjects": [ "42B25", "46E35" ], "keywords": [ "discrete version", "tanakas theorem", "maximal functions", "hardy-littlewood maximal operator", "discrete non-centered maximal operator" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Proc. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.3030B" } } }