arXiv:2303.16587 [math.FA]AbstractReferencesReviewsResources
Maximal operator in Musielak--Orlicz--Sobolev spaces
Piotr Michał Bies, Michał Gaczkowski, Przemysław Górka
Published 2023-03-29Version 1
We study the Hardy-Littlewood maximal operator in the Musielak-Orlicz-Sobolev space $W^{1,\varphi}(\mathbb{R}^n)$. Under some natural assumptions on $\varphi$ we show that the maximal function is bounded and continuous in $W^{1,\varphi}(\mathbb{R}^n)$.
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:0812.3075 [math.FA] (Published 2008-12-16)
Maximal inequalities for dual Sobolev spaces $W^{-1,p}$ and applications to interpolation
On a discrete version of Tanaka's theorem for maximal functions
arXiv:2405.20907 [math.FA] (Published 2024-05-31)
The Muckenhoupt condition