arXiv:0911.0066 [math.RT]AbstractReferencesReviewsResources
The Calogero-Moser partition for G(m,d,n)
Published 2009-10-31, updated 2011-03-02Version 3
We show that it is possible to deduce the Calogero-Moser partition of the irreducible representations of the complex reflection groups G(m,d,n) from the corresponding partition for G(m,1,n). This confirms, in the case W = G(m,d,n), a conjecture of Gordon and Martino relating the Calogero-Moser partition to Rouquier families for the corresponding cyclotomic Hecke algebra.
Comments: 23 pages; minor revision of section 7; to appear in Nagoya Journal of Mathematics
Categories: math.RT
Related articles: Most relevant | Search more
arXiv:2207.01564 [math.RT] (Published 2022-07-04)
On Quasi Steinberg characters of Complex Reflection Groups
The Calogero-Moser partition and Rouquier families for complex reflection groups
arXiv:math/0105053 [math.RT] (Published 2001-05-08)
Green functions associated to complex reflection groups, II