{ "id": "0911.0066", "version": "v3", "published": "2009-10-31T10:39:37.000Z", "updated": "2011-03-02T22:59:45.000Z", "title": "The Calogero-Moser partition for G(m,d,n)", "authors": [ "Gwyn Bellamy" ], "comment": "23 pages; minor revision of section 7; to appear in Nagoya Journal of Mathematics", "categories": [ "math.RT" ], "abstract": "We show that it is possible to deduce the Calogero-Moser partition of the irreducible representations of the complex reflection groups G(m,d,n) from the corresponding partition for G(m,1,n). This confirms, in the case W = G(m,d,n), a conjecture of Gordon and Martino relating the Calogero-Moser partition to Rouquier families for the corresponding cyclotomic Hecke algebra.", "revisions": [ { "version": "v3", "updated": "2011-03-02T22:59:45.000Z" } ], "analyses": { "subjects": [ "16G99", "05E10" ], "keywords": [ "calogero-moser partition", "complex reflection groups", "corresponding cyclotomic hecke algebra", "rouquier families", "corresponding partition" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0911.0066B" } } }