arXiv Analytics

Sign in

arXiv:0801.1627 [math.RT]AbstractReferencesReviewsResources

The Calogero-Moser partition and Rouquier families for complex reflection groups

Maurizio Martino

Published 2008-01-10, updated 2009-03-13Version 2

Let $W$ be a complex reflection group. We formulate a conjecture relating blocks of the corresponding restricted rational Cherednik algebras and Rouquier families for cyclotomic Hecke algebras. We verify the conjecture in the case that $W$ is a wreath product of a symmetric group with a cyclic group of order $l$.

Comments: Completely rewritten with updated conjecture and a proof of the conjecture for wreath products (thus incorporating the main result of arXiv:0804.2591)
Categories: math.RT
Subjects: 16G99, 16S38, 16S80, 20C08
Related articles: Most relevant | Search more
arXiv:0911.0066 [math.RT] (Published 2009-10-31, updated 2011-03-02)
The Calogero-Moser partition for G(m,d,n)
arXiv:0802.4306 [math.RT] (Published 2008-02-28, updated 2008-08-12)
Degree and valuation of the Schur elements of cyclotomic Hecke algebras
arXiv:0805.0288 [math.RT] (Published 2008-05-02, updated 2009-11-26)
Rouquier blocks of the cyclotomic Hecke algebras of G(de,e,r)