{ "id": "0801.1627", "version": "v2", "published": "2008-01-10T16:31:11.000Z", "updated": "2009-03-13T14:25:37.000Z", "title": "The Calogero-Moser partition and Rouquier families for complex reflection groups", "authors": [ "Maurizio Martino" ], "comment": "Completely rewritten with updated conjecture and a proof of the conjecture for wreath products (thus incorporating the main result of arXiv:0804.2591)", "categories": [ "math.RT" ], "abstract": "Let $W$ be a complex reflection group. We formulate a conjecture relating blocks of the corresponding restricted rational Cherednik algebras and Rouquier families for cyclotomic Hecke algebras. We verify the conjecture in the case that $W$ is a wreath product of a symmetric group with a cyclic group of order $l$.", "revisions": [ { "version": "v2", "updated": "2009-03-13T14:25:37.000Z" } ], "analyses": { "subjects": [ "16G99", "16S38", "16S80", "20C08" ], "keywords": [ "complex reflection group", "rouquier families", "calogero-moser partition", "corresponding restricted rational cherednik algebras", "cyclotomic hecke algebras" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0801.1627M" } } }