arXiv Analytics

Sign in

arXiv:0907.2693 [math.PR]AbstractReferencesReviewsResources

A CLT for the third integrated moment of Brownian local time increments

Jay Rosen

Published 2009-07-15, updated 2009-10-20Version 2

Let $\{L^{x}_{t} ; (x,t)\in R^{1}\times R^{1}_{+}\}$ denote the local time of Brownian motion. Our main result is to show that for each fixed $t$ $${\int (L^{x+h}_t- L^x_t)^3 dx-12h\int (L^{x+h}_t - L^x_t)L^x_t dx-24h^{2}t\over h^2} \stackrel{\mathcal{L}}{\Longrightarrow}\sqrt{192}(\int (L^x_t)^3dx)^{1/2}\eta$$ as $h\to 0$, where $\eta$ is a normal random variable with mean zero and variance one that is independent of $L^{x}_{t}$. This generalizes our previous result for the second moment. We also explain why our approach will not work for higher moments

Related articles: Most relevant | Search more
arXiv:0801.2959 [math.PR] (Published 2008-01-18)
On Besov regularity of Brownian motions in infinite dimensions
arXiv:math/0601632 [math.PR] (Published 2006-01-26)
Configurations of balls in Euclidean space that Brownian motion cannot avoid
arXiv:math/0403080 [math.PR] (Published 2004-03-03, updated 2004-11-23)
Brownian motion in riemannian admissible complex