{ "id": "0907.2693", "version": "v2", "published": "2009-07-15T20:06:38.000Z", "updated": "2009-10-20T12:22:17.000Z", "title": "A CLT for the third integrated moment of Brownian local time increments", "authors": [ "Jay Rosen" ], "categories": [ "math.PR" ], "abstract": "Let $\\{L^{x}_{t} ; (x,t)\\in R^{1}\\times R^{1}_{+}\\}$ denote the local time of Brownian motion. Our main result is to show that for each fixed $t$ $${\\int (L^{x+h}_t- L^x_t)^3 dx-12h\\int (L^{x+h}_t - L^x_t)L^x_t dx-24h^{2}t\\over h^2} \\stackrel{\\mathcal{L}}{\\Longrightarrow}\\sqrt{192}(\\int (L^x_t)^3dx)^{1/2}\\eta$$ as $h\\to 0$, where $\\eta$ is a normal random variable with mean zero and variance one that is independent of $L^{x}_{t}$. This generalizes our previous result for the second moment. We also explain why our approach will not work for higher moments", "revisions": [ { "version": "v2", "updated": "2009-10-20T12:22:17.000Z" } ], "analyses": { "subjects": [ "60F05", "60J55", "60J65" ], "keywords": [ "brownian local time increments", "third integrated moment", "second moment", "brownian motion", "mean zero" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.2693R" } } }