arXiv Analytics

Sign in

arXiv:math/9910037 [math.AG]AbstractReferencesReviewsResources

The Moduli of Flat U(p,1) Structures on Riemann Surfaces

Eugene Z. Xia

Published 1999-10-06, updated 1999-12-21Version 2

For a compact Riemann surface $X$ of genus $g > 1$, $\Hom(\pi_1(X), U(p,1))/U(p,1)$ is the moduli space of flat $\U(p,1)$-connections on $X$. There is an integer invariant, $\tau$, the Toledo invariant associated with each element in $\Hom(\pi_1(X), U(p,1))/U(p,1)$. If $q = 1$, then $-2(g-1) \le \tau \le 2(g-1)$. This paper shows that $\Hom(\pi_1(X), U(p,1))/U(p,1)$ has one connected component corresponding to each $\tau \in 2Z$ with $-2(g-1) \le \tau \le 2(g-1)$. Therefore the total number of connected components is $2(g-1) + 1$.

Comments: 12 pages. The revised version corrects a technical mistake in the previous version in section 4.1
Categories: math.AG
Subjects: 14D20, 14H60
Related articles: Most relevant | Search more
arXiv:1712.08765 [math.AG] (Published 2017-12-23)
Stability Of The Parabolic Poincaré Bundle
arXiv:math/0009203 [math.AG] (Published 2000-09-22, updated 2001-08-27)
The Moduli of Flat PU(p,p)-Structures with Large Toledo Invariants
arXiv:math/0305346 [math.AG] (Published 2003-05-24)
Moduli spaces of bundles over Riemann surfaces and the Yang-Mills stratification revisited