{ "id": "math/9910037", "version": "v2", "published": "1999-10-06T23:28:39.000Z", "updated": "1999-12-21T23:45:07.000Z", "title": "The Moduli of Flat U(p,1) Structures on Riemann Surfaces", "authors": [ "Eugene Z. Xia" ], "comment": "12 pages. The revised version corrects a technical mistake in the previous version in section 4.1", "categories": [ "math.AG" ], "abstract": "For a compact Riemann surface $X$ of genus $g > 1$, $\\Hom(\\pi_1(X), U(p,1))/U(p,1)$ is the moduli space of flat $\\U(p,1)$-connections on $X$. There is an integer invariant, $\\tau$, the Toledo invariant associated with each element in $\\Hom(\\pi_1(X), U(p,1))/U(p,1)$. If $q = 1$, then $-2(g-1) \\le \\tau \\le 2(g-1)$. This paper shows that $\\Hom(\\pi_1(X), U(p,1))/U(p,1)$ has one connected component corresponding to each $\\tau \\in 2Z$ with $-2(g-1) \\le \\tau \\le 2(g-1)$. Therefore the total number of connected components is $2(g-1) + 1$.", "revisions": [ { "version": "v2", "updated": "1999-12-21T23:45:07.000Z" } ], "analyses": { "subjects": [ "14D20", "14H60" ], "keywords": [ "structures", "compact riemann surface", "connected component", "total number", "integer invariant" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math.....10037X" } } }